11 research outputs found

    RingMo-lite: A Remote Sensing Multi-task Lightweight Network with CNN-Transformer Hybrid Framework

    Full text link
    In recent years, remote sensing (RS) vision foundation models such as RingMo have emerged and achieved excellent performance in various downstream tasks. However, the high demand for computing resources limits the application of these models on edge devices. It is necessary to design a more lightweight foundation model to support on-orbit RS image interpretation. Existing methods face challenges in achieving lightweight solutions while retaining generalization in RS image interpretation. This is due to the complex high and low-frequency spectral components in RS images, which make traditional single CNN or Vision Transformer methods unsuitable for the task. Therefore, this paper proposes RingMo-lite, an RS multi-task lightweight network with a CNN-Transformer hybrid framework, which effectively exploits the frequency-domain properties of RS to optimize the interpretation process. It is combined by the Transformer module as a low-pass filter to extract global features of RS images through a dual-branch structure, and the CNN module as a stacked high-pass filter to extract fine-grained details effectively. Furthermore, in the pretraining stage, the designed frequency-domain masked image modeling (FD-MIM) combines each image patch's high-frequency and low-frequency characteristics, effectively capturing the latent feature representation in RS data. As shown in Fig. 1, compared with RingMo, the proposed RingMo-lite reduces the parameters over 60% in various RS image interpretation tasks, the average accuracy drops by less than 2% in most of the scenes and achieves SOTA performance compared to models of the similar size. In addition, our work will be integrated into the MindSpore computing platform in the near future

    First Record of Corallivorous Nudibranch <i>Pinufius</i> (Gastropoda: Nudibranchia) in the South China Sea: A Suspected New Species of <i>Pinufius</i>

    No full text
    A corallivorous nudibranch from the South China Sea reproduced explosively and caused extensive damage to Porites in our aquarium. In this study, morphological and molecular analyses of the nudibranch were conducted and described. Morphologically, this nudibranch was nearly consistent with Pinufius rebus in its characteristics intermediate between arminids and aeolids. The only detected difference was that the hook-like denticles on the masticatory border of P. rebus were absent in this nudibranch. In a molecular analysis, phylogenetic results based on the cytochrome oxidase subunit-I, 16S rRNA, and histone H3 gene sequences showed that this nudibranch and P. rebus form a well-supported sister clade under the superfamily Fionoidea, with significant interspecific divergence (0.18). Thus, we presumed that this nudibranch is a new species of Pinufius. Our results extend the distribution of Pinufius to the South China Sea, support the current taxonomic status of Pinufius under the superfamily Fionoidea, and imply that the species composition of Pinufius is more complex than previous records. Moreover, as a corallivorous nudibranch, the potential threat of Pinufius to coral health cannot be neglected

    First Record of Corallivorous Nudibranch Pinufius (Gastropoda: Nudibranchia) in the South China Sea: A Suspected New Species of Pinufius

    No full text
    A corallivorous nudibranch from the South China Sea reproduced explosively and caused extensive damage to Porites in our aquarium. In this study, morphological and molecular analyses of the nudibranch were conducted and described. Morphologically, this nudibranch was nearly consistent with Pinufius rebus in its characteristics intermediate between arminids and aeolids. The only detected difference was that the hook-like denticles on the masticatory border of P. rebus were absent in this nudibranch. In a molecular analysis, phylogenetic results based on the cytochrome oxidase subunit-I, 16S rRNA, and histone H3 gene sequences showed that this nudibranch and P. rebus form a well-supported sister clade under the superfamily Fionoidea, with significant interspecific divergence (0.18). Thus, we presumed that this nudibranch is a new species of Pinufius. Our results extend the distribution of Pinufius to the South China Sea, support the current taxonomic status of Pinufius under the superfamily Fionoidea, and imply that the species composition of Pinufius is more complex than previous records. Moreover, as a corallivorous nudibranch, the potential threat of Pinufius to coral health cannot be neglected

    Tissues Expression, Polymorphisms of IFN Regulatory Factor 6 (IRF6) Gene and Their Associated with Immune Traits in Three Pig Populations

    No full text
    Interferon regulatory factor 6 (IRF6) gene is a member of the IRF-family, and plays functionally diverse roles in the regulation of the immune system. In this report, the 13,720 bp porcine IRF6 genomic DNA structure was firstly identified with a putative IRF6 protein of 467 amino acids. Alignment and phylogenetic analysis of the porcine IRF6 amino acid sequences with their homologies to other species showed high identity (over 96%). Tissues expression of IRF6 mRNA was observed by RT-PCR, the results revealed IRF6 expressed widely in eight tissues. One SNP (HQ026023:1383 G>C) in exon7 and two SNPs (HQ026023:130 G>A; 232 C>T) in the 5 ′ promoter region of porcine IRF6 gene were demonstrated b y DNA sequencing analysis. A further analysis of SNP genotypes associated with immune traits including IFN-γ and IL10 concentrations in serum was carried out in three pig populations including Large White, Landraces and Songliao Black pig (a Chinese indigenous breed). The results showed that the SNP (HQ026023:1383 G>C) was significantly associated with the level of IFN-γ (d 20) in serum (p = 0.038) and the ratio of IFN-γ to IL10 (d 20) in serum (p = 0.041); The other two SNPs (HQ026023:130 G>A; 232 C>T) were highly significantly associated with IL10 level in serum both at the day 20 (p = 0.005; p = 0.001) and the day 35 (p = 0.004; p = 0.006). Identification of the porcine IRF6 gene will help our further understanding of the molecular basis of the IFN regulation pathway in the porcine immune response. All these results should indicate that the IRF6 gene can be regarded as a molecular marker associated with the IL10 level in serum and used for genetic selection in the pig breeding

    The complete mitochondrial genome of Montipora vietnamensis (Scleractinia, Acroporidae)

    No full text
    Montipora vietnamensis Veron, 2000 (Cnidaria, Anthozoa, Scleractinia, Acroporidae) is an uncommon, but distinctive species of stony coral. The complete mitochondrial genome of M. vietnamensis was sequenced in this study for the first time, based on 32 pairs of primers newly designed according to seven species in the family Acroporidae. The mitogenome of M. vietnamensis has a circular form and is 17,885 bp long, including 13 protein-coding genes (PCGs), 2 tRNA (tRNAMet, tRNATrp), 2 rRNA genes and a putative control-region. The base composition of the complete mitogenome was 24.8% A, 14.2% C, 24.2% G and 36.8% T, with a higher AT content (61.6%) than GC content (38.4%). Based on 13 protein-coding genes, a Maximum Likelihood phylogenetic analysis showed that M. vietnamensis is clustered in the genus Montipora which belongs to the family Acroporidae. More stony coral species should be sequenced for basic molecular information and to help confirm the taxonomic status and evolutionary relationships of Scleractinia in the future

    eForecaster: Unifying Electricity Forecasting with Robust, Flexible, and Explainable Machine Learning Algorithms

    No full text
    Electricity forecasting is crucial in scheduling and planning of future electric load, so as to improve the reliability and safeness of the power grid. Despite recent developments of forecasting algorithms in the machine learning community, there is a lack of general and advanced algorithms specifically considering requirements from the power industry perspective. In this paper, we present eForecaster, a unified AI platform including robust, flexible, and explainable machine learning algorithms for diversified electricity forecasting applications. Since Oct. 2021, multiple commercial bus load, system load, and renewable energy forecasting systems built upon eForecaster have been deployed in seven provinces of China. The deployed systems consistently reduce the average Mean Absolute Error (MAE) by 39.8% to 77.0%, with reduced manual work and explainable guidance. In particular, eForecaster also integrates multiple interpretation methods to uncover the working mechanism of the predictive models, which significantly improves forecasts adoption and user satisfaction

    Interfering small ubiquitin modifiers (SUMO) improves the thermotolerance of apple by facilitating the activity of MdDREB2A

    No full text
    Abstract Heat stress, which is caused by global warming, threatens crops yield and quality across the world. As a kind of post-translation modification, SUMOylation involves in plants heat stress response with a rapid and wide pattern. Here, we identified small ubiquitin modifiers (SUMO), which affect drought tolerance in apple, also participated in thermotolerance. Six isoforms of SUMOs located on six chromosomes in apple genome, and all the SUMOs were up-regulated in response to heat stress condition. The MdSUMO2 RNAi transgenic apple plants exhibited higher survival rate, lower ion leakage, higher catalase (CAT) activity, and Malondialdehyde (MDA) content under heat stress. MdDREB2A, the substrate of MdSUMO2 in apple, was accumulated in MdSUMO2 RNAi transgenic plants than the wild type GL-3 at the protein level in response to heat stress treatment. Further, the inhibited SUMOylation level of MdDREB2A in MdSUMO2 RNAi plants might repress its ubiquitination, too. The accumulated MdDREB2A in MdSUMO2 RNAi plants further induced heat-responsive genes expression to strengthen plants thermotolerance, including MdHSFA3, MdHSP26.5, MdHSP18.2, MdHSP70, MdCYP18-1 and MdTLP1. In summary, these findings illustrate that interfering small ubiquitin modifiers (SUMO) in apple improves plants thermotolerance, partly by facilitating the stability and activity of MdDREB2A

    Factors promoting thrombosis in essential thrombocythemia: a Meta-analysis

    No full text
    ObjectiveTo further understand the factors that promote thrombosis in essential thrombocythemia (ET) that were not included in IPSET-thrombosis (International Prognostic Score of Thrombosis for ET). MethodsA systematic evaluation was conducted on 292 studies by retrieving PubMed,Web of Science, and The Cochrane Library. The incidence and relative risk ratio (RR) of thrombosis in ET patients with different risk factors were calculated. The confidence levels for the outcome were analyzed in combination with RR values and recommendation scores (RS) to find the thrombotic risk factors in ET patients. ResultsOut of 9 risk factors that promoted ET thrombosis, there were 4 factors in IPSET-thrombosis, including history of thrombosis (35.0%, RR=3.30, 95% CI : 2.30-4.75), JAK2V617F positive (21.0%, RR=2.28, 95%CI : 1.14-4.56), age over 60 years old ( 22.4% , RR=1.95, 95%CI : 1.17-3.23) and cardiovascular risk factors (17.7%, RR =1.90, 95%CI : 1.08-3.35). The remaining five risk factors, not listed in IPSET-thrombosis, included monoclonal type of ET based on X-chromosome inactivation pattern (XCIP, 30.6%, RR=4.49, 95% CI: 1.58-12.77), high JAK2V617F burden (33.9%, RR=3.69, 95%CI: 1.70-7.99), leukocytosis (18.7%, RR=3.05, 95%CI: 1.81-5.13), MPL mutation (22.1%, RR=2.40, 95%CI: 1.08-5.33) and splenomegaly (25.6%, RR=1.76, 95%CI:1.29-2.40). ConclusionAmong the risk factors promoting thrombosis in ET patients, five thrombotic risk factors not included in the IPSET-thrombosis have been identified

    Observations of Forbush Decreases of Cosmic-Ray Electrons and Positrons with the Dark Matter Particle Explorer

    No full text
    The Forbush decrease (FD) represents the rapid decrease of the intensities of charged particles accompanied with the coronal mass ejections or high-speed streams from coronal holes. It has been mainly explored with the ground-based neutron monitor network, which indirectly measures the integrated intensities of all species of cosmic rays by counting secondary neutrons produced from interaction between atmospheric atoms and cosmic rays. The space-based experiments can resolve the species of particles but the energy ranges are limited by the relatively small acceptances except for the most abundant particles like protons and helium. Therefore, the FD of cosmic-ray electrons and positrons have just been investigated by the PAMELA experiment in the low-energy range (<5 GeV) with limited statistics. In this paper, we study the FD event that occurred in 2017 September with the electron and positron data recorded by the Dark Matter Particle Explorer. The evolution of the FDs from 2 GeV to 20 GeV with a time resolution of 6 hr are given. We observe two solar energetic particle events in the time profile of the intensity of cosmic rays, the earlier, and weaker, one has not been shown in the neutron monitor data. Furthermore, both the amplitude and recovery time of fluxes of electrons and positrons show clear energy dependence, which is important in probing the disturbances of the interplanetary environment by the coronal mass ejections
    corecore